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1 Background

In the absence of any external effects, the energy difference between the I = 1/2 and I = 3/2 nuclear
states of 57Fe is 14.4 keV. However, the local environment in which the nucleus is sitting can cause
this ‘true’ energy difference to change. For example, chemical isomer shifts can come about when the
orbital electrons of the host and neighboring atoms cause fields that can cause energy levels in the
nucleus to change. Another local environment variable that can cause the nucleus to have different
energy shifts when going from I = 1/2 to I = 3/2 is the nuclear Zeeman splitting effect, where one
transition energy has many transition energies. Also, an electric field gradient that is due to simply
the molecular structure around the nucleus of 57Fe can cause a quadrupole splitting effect. To study
these very fine differences in the ‘true’ shift in energy, we can use Mossbauer spectroscopy.

The 57Fe source will emit a gamma ray in 14.4 keV, and we can use absorbers with different
environments to alter how the energy shift is detected. Using a linear motor, we can move the source
of gamma rays closer and farther away from the absorber, causing a Doppler effect. To look at the
absorption of the Doppler-shifted gamma rays as a function of energy, we can measure the amount
transmitted through a given absorber. For some fixed time tdwell, the UCS-30 software can count
the amount of gamma rays that pass through the absorber in a revolution of the linear motor. The
software sweeps over each channel, and assigns a small time interval. It then counts the amount of
gamma rays having passed in that small time interval for that channel. It keeps counting the gamma
rays for all 512 channels, which will correspond to the tdwell.

Using the geometry of the Michelson interferometer, we can map each fringe amount with some
change in position of the linear motor over some time interval it takes for the linear motor to move.
Having some change in position over a time interval, we have a velocity! We can take a fringe spectrum
and map it onto a velocity spectrum. Knowing the energy shift difference due to the Doppler effect, we
know E

′

t −Et = ∆(E(ch)) = v(ch)Et/c, so we can also map the velocity onto the shift in energy from
the transition energy. With these different mappings and conversions, we can plot the transmission
through the absorber as a function of the change in the ‘true’ energy transition of 14.4 keV as a linear
motor moves the 57Fe source. We can fit dips in the transmission energy to a known distribution and
calculate some interesting characteristics about the local environment causing the shift in the energy
transition. We can compare these characteristics to literature values as a check on the entire process.

To measure the chemical isomer shift, we use a stainless steel 302 absorber. To measure the shift
due to the nuclear zeeman splitting effect, we take an enriched 57Fe plate as the absorber. To study
the shift due to an electric field gradient, we use a sodium nitroprusside absorber.

2 Velocity Calibration

To calibrate the velocity, we can first look at the fringe and make a fit to the data using Equation 1
for the fringe count

n(ch) = n0|ch− ch0| (1)
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where n0 and ch0 are fitted values for the slope and where the fringe goes to zero respectively.
We take a fringe spectrum before and after the experiment (represented in the following Figures as
”Pre” and ”Post”) to confirm that our conversions for the shift from the energy transition is the same
throughout the experiment.

Figure 1: Michelson Interferometer Setup for Velocity Calibration

Figure 2: Fringe Fitting
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Using the geometry of the Michelson Interferometer setup, we can note that the photocell will
notice n fringes if ∆x = nλ/2, where λ is the wavelength of the He Ne Laser, and ∆x is the change in
x2 in Figure 1. The wavelength is given as λ = 632.8 nm.

The fitting values to the equation for the fringe values are in Table 1.

n0 (count/channel) ch0 (channel) χ2/N
Pre 19.81 ± 0.03 290.11 ± 0.03 2.28
Post 4.97 ± 0.03 288.41 ± 0.12 0.63

Table 1: Fitting Parameters for Fringe

With low reduced χ2 values and Figure 2 showing the fits landing generally on top of the data, this
indicates a pretty good fit to the equation. We estimated the error for the fringe count as 7 counts.

Over some region of time, we can convert the fringe counts to a velocity of the source as

v =
∆x

∆t
=

n(ch)λ

2∆t
=

λ

2∆t
n0(ch− ch0) (2)

where ∆t is the total amount of time passed after p number of revolutions of the motor. We define
the region of time as some range of channels where the V shape is well defined, which here is channels
225 to 375. In total, ∆t = p · tdwell, and we have set tdwell = 300µs in the software. Recording the
amount of passes, we can calculate the source’s velocity.

After completing the conversion, we get Figure 3.

Figure 3: Velocity as a Function of Channel

Here we can see that the velocities have very similar slopes and x-axis intercepts, which gives an
indication that we can use either one to convert to shifts from the transition energy. Since we calculated
the velocity as a function of n0, ch0, and ch, we know that each of these values have some intrinsic
uncertainty attributed to each. At the level of sensitivity we are interested in, we can assume that the
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wavelength of the laser and the total time interval, ∆t, have negligible uncertainty. In effect, we can
estimate the uncertainty in the velocity of the source as Equation 3.

dv

v
=

√
dn0

n0

2

+
dch

(ch− ch0)

2

+
dch0

(ch− ch0)

2

(3)

where n0, ch0, dn0 and dch0 come from the fitting algorithm. Now we have the value for the
velocity as well as its uncertainty, as a function of the channel and the channel’s uncertainty.

Furthermore, we can convert this velocity value for the source, to energy shifts from the transition
energy of 14.4 keV by using Equation 4.

∆E(ch) = v(ch)Et/c (4)

where Et is the transition energy of 14.4 keV from the Co-57’s decay to Fe-57, specifically the
transition of Fe-57 I = 1/2 to I = 3/2, and c is the speed of light. Here, we take the uncertainty in
the speed of light and the energy transition to be negligible. In effect, we estimate the uncertainty in
this change from the true energy shift as Equation 5.

∆(∆E(ch)) = ∆E(ch) · dv/v (5)

We can now create a conversion factor of channels to energy shift, taking into account the velocity
as actually negative in the channels before the velocity hits zero. After plugging in the fitted values
for the original fit to the fringe function given by Equation 1, we find the energy described as

∆E(ch)±∆(∆E(ch)) = ∆E(ch)±∆E(ch)dv/v = ∆E(ch)(1± dv/v)

where we can use the fitted values and their uncertainties from Table 1 to find an equation as a
function of the channel measured and its uncertainty. We can make a linear fit to this relationship to
find a slope of 2.598 ± 0.003 in units of nano-eV/channels, which can be used as a conversion when
the ch0 is not important.

Figure 4: Source Spectrum
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Before taking any spectra for the sensitive shifts in energy, we completed a spectrum of the source
with and without an x-ray absorber.

The x-ray absorber can filter out the low 6 keV energy peak that is present due to its K-line
emission, and help concentrate the 14.4 keV energy peak due to the energy transition.

3 Stainless Steel 302 Spectrum

To study the change to the ‘true’ transition energy of 14.4 keV due to a chemical isomer shift, we use
a stainless steel 302 plate as an absorber for the gamma rays emitted in the transition.

Figure 5: Stainless Steel 302 Spectrum

We know that the distribution of the absorption peaks will be Lorentzian, so we can fit a function of
the form Count = D−I(E), where I is a Lorentzian fitted to the spectrum and D is some constant. The
Lorentzian distribution is shown in Equation 6. To choose the region of interest to fit the Lorentzian
distribution, I wanted to find a region that allowed for a bit of the flat count around 700.
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I(E) = I0
(Γ/2)2

(E − E0)2 + (Γ/2)2
(6)

Here, the ∆E we want is Equation 6’s E0, and the FWHM of the distribution is Equation 6’s
gamma. The E0 will provide the shift in energy where the absorption peaks, while the FWHM will
provide the natural linewidth of the transition. After completing the fit, we find the final parameters
are shown in Table 2.

Γ (µeV) ∆E (µeV) χ2/N
0.018 +/- 0.002 -0.0116 +/- 0.0005 0.91

Table 2: Fitting Parameters for Stainless Steel Spectra

The fits were made using raw channels, so the appropriate ∆E and its uncertainty comes from
Equations 4 and 5. The Γ is also fitted using channels, and since we are taking the difference between
two channel values, the ch0 end up canceling out from both sides of where the width is at half max,
so we can use the slope for the conversion between channels to energy of m = 2.598± 0.003 in units of
nano-eV/channels multiplied by the channel number.

Γ = mΓch (7)

Where Γch is the fitted FWHM when using channels. In effect, the uncertainty can be estimated
as Equation 8.

dΓ

Γ
=

√
(
dΓch

Γch
)2 + (

dm

m
)2 (8)

where we get the uncertainty in Γch from the fitting algorithm, provided in Table 2.
Calculating the mean lifetime of the I = 3/2 state from (Γ/2)τ = h̄/2, where Gamma is half of the

observed FWHM, we can isolate the mean lifetime to get Equation 9

τ = h̄/(Γobs/2) (9)

We then get 71.44 ± 5.95 ns as the mean lifetime, which is about half of the literature value of
141.4± 1.4 ns.

We can estimate the uncertainty in h̄ as negligible in this equation as it is a well-known value. In
effect, the uncertainty for the mean lifetime is estimated as

dτ

τ
=

√
(
dΓ

Γ
)2 =

dΓ

Γ

4 Enriched Iron Spectrum

To study the change to the ‘true’ transition energy of 14.4 keV due to the Zeeman effect, we use an
enriched 57Fe plate as an absorber for the gamma rays emitted in the transition.

Similarly as for the stainless steel, we can fit Lorentzian distributions for each peak. Also, we can
find how the energy transitions are distributed from Figure 7. Each Nuclear Zeeman split can be
attributed to each peak from left to right.

Since the shift in energy and velocity are linearly dependent, then each transition can still be read
from low velocity / low energy shift to high velocity / high energy shift from left to right in Figure 7.

Each transition can have a change of the initial quantum number mI equal to -1, 0, and 1. From
left to right in Figure 6, the first transition is from mI = 1/2 to mI = 3/2, the second is mI = 1/2 to
mI = 1/2, the third is from mI = 1/2 to mI = −1/2, the fourth is from mI = −1/2 to mI = +1/2,
the fifth is from mI = −1/2 to mI = −1/2, and the final transition is from mI = −1/2 to mI = −3/2.
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Figure 6: Enriched Iron Spectrum

Figure 7: Zeeman Shifts

Each of these peaks had a Lorentzian distribution fitted to them, with the relevant values found in
Table 3.

The uncertainties for Γ, ∆E, and τ use the same system as for the stainless steel. We can see that,
as expected, most Γ are narrower than that of the observed stainless steel 0.018 ± 0.002 µeV.
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Initial mI Final mI Γ (µeV) ∆E (µeV) χ2/N τ (ns)
+1/2 +3/2 0.019 ± 0.002 -0.2531 ± 0.0006 1.73 68.63 +/- 5.49
+1/2 +1/2 0.015 ± 0.002 -0.1515 ± 0.0005 1.57 86.90 +/- 8.80
+1/2 -1/2 0.011 ± 0.002 -0.0454 ± 0.0007 1.46 119.59 ± 16.67
-1/2 -3/2 0.013 ± 0.002 0.0344 ± 0.0006 1.17 98.31 ± 11.26
-1/2 -1/2 0.012 ± 0.002 0.1406 ± 0.0005 0.82 109.56 ± 13.99
-1/2 +1/2 0.017 ± 0.002 0.2494 ± 0.0006 1.35 75.67 ± 6.67

Table 3: Fitting Parameters for Enriched Iron Spectra

Using Figure 7, we can find ∆E0 as the difference between energy shifts that start on different mI

values in the I = 1/2 state, but end up on the same mI values in the I = 3/2 states. This means that
either the difference between the fourth and second transition or the difference between the fifth and
third transition can be used to find ∆E0.

The first method yields 0.0186 ± 0.001 µeV, while the latter has the value 0.0186 ± 0.001 µeV.
These values are in agreement with each other, which is a good check. Since we are subtracting the
values, the uncertainty for these differences is given by Equation 10.

∆(∆E0) =
√

∆E2
2 +∆E2

1 (10)

where ∆Ei are the shifts in energy peaks.
Using the relationship given by equation 9 from the wiki, we know there is a relationship between

∆E0 and H. So we can manipulate the equation to find this magnetic field H in Equation 11.

H = I0
∆E0

µ0
(11)

With I0 = 1/2 and µ0 = 2.884·10−9 eV/T, we can find two values of the magnitude of the magnetic
field using the two values found for ∆E0. To propagate uncertainty for the magnetic field’s magnitude,
we Equation 12.

dH = H

√
∆(∆E0)

∆E0

2

+
dµ0

µ0

2

(12)

In this case, we take dµ0 to be the wiki value of 0.00007µn.
Following these steps, we get two values for the magnetic field. One for the transition difference

in energy from the fourth and second transition, H1 = 32.68± 0.14 T, and another from the fifth and
third transition H2 = 32.69 ± 0.15 T. Using these values and their appropriate uncertainty, we can
fit a horizontal line that’s independent of the x-value using the uncertainty to compute a weighted
average to find what average value the two values provide. The averaged magnetic field found is
Havg = 32.69± 0.10 T.

Both the individual and averaged values are in agreement with each other, as well as in agreement
with the literature value of 33.3 ± 1.0 Tesla.

From Figure 7, we can also find the values for ∆E1 by taking the energy shift difference between
neighboring values of first and second, second and third, fifth and fourth, and fifth and sixth peaks.
In that same order, we find the values for the difference between the changes from the energy shift as
0.102 ± 0.001, 0.106 ± 0.001, 0.106 ± 0.001, and 0.109 ± 0.001 in units of µeV. We can now use the
similar relationship of µ0 from the previous equation for the magnetic field, but now for µ1 such that
it follows Equation 13.

µ1 = ∆E1I1/H (13)
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where I1 = 3/2 and H is the same magnetic field found as before. The three values for the magnetic
field are very close to each other, but I use the averaged magnetic field Havg, as well as its associated
uncertainty to complete this calculation. The uncertainty is then described in Equation 14.

dµ1 = µ1

√
∆(∆E1)

∆E1

2

+
dHavg

Havg

2

(14)

where ∆(∆E1) is the uncertainty in the difference of two energy shifts, as described in equation 10.
The uncertainty in the ratio of µ0 to µ1 is described by Equation 15.

d(
µ0

µ1
) =

µ0

µ1

√
dµ0

µ0

2

+
dµ1

µ1

2

(15)

Since we have four neighboring differences in energy shifts for ∆E1, we get four different ratios. In
the same order as before, reading the relevant differences from left to right, we get the following values
0.610 ± 0.005, 0.584 ± 0.005, 0.584 ± 0.005, and 0.570 ± 0.003. Two fall within uncertainty of the
literature value of 0.587 ± 0.032.

Fitting similarly as for the magnetic field to a constant mu ratio value independent of x, we find a
weighted average of the mu ratios as µavg = 0.585± 0.002.

5 Quadrupole Spectrum

To study the change to the ‘true’ transition energy of 14.4 keV due to quadrupole splitting, we use a
sodium nitroprusside absorber plate as an absorber for the gamma rays emitted in the transition.

Figure 8: Quadrupole Spectrum
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Similarly as for both the stainless steel and enriched iron spectra, we can fit Lorentzian distributions
for each peak. Also, we can find how the energy transitions are distributed from Figure 9. Each
quadrupole split can be attributed to each peak from left to right.

Figure 9: Quadrupole Shifts

Using a similar logic as before, we know that the lower velocity shift corresponds to a final mI state
of ±1/2, and this lower velocity can be attributed to a lower change from the ‘true’ energy shift. So
this peak corresponds to the blue line in Figure 8, while the peak in orange corresponds to the final
state of mI = ±3/2.

Both peaks had a Lorentzian distribution fitted to them and the relevant parameters can be seen
in Table 4.

Initial mI Final mI Γ (µeV) ∆E (µeV) χ2/N τ (ns)
±1/2 ±1/2 0.012 ± 0.002 -0.0574 ± 0.0005 1.64 113.49 ± 15.01
±1/2 ±3/2 0.009 ± 0.002 0.0205 ± 0.0005 0.75 139.96 ± 22.83

Table 4: Fitting Parameters for Sodium Nitroprusside Spectra

Taking the difference between the two energy shifts and propagating the errors like in Equation 10,
we get ∆Equad = 0.078± 0.002 µeV.

We can find an estimate for the electric field gradient by evaluating Equation 16.

∆Equad = ∆E(I = 3/2,mI = ±3/2)−∆E(I = 3/2,mI = ±1/2) (16)

where the specific shifts in energy can be calculated as Equation 17,

∆E = eα(I,mI)Q̃
∂E

∂z
(17)

where e is the electric charge and α can be described as equation 18.

α(I,mI) =
3m2

I − I(I + 1)

I(2I − 1)
(18)

We can use the difference between the two energy shifts, which we know as ∆Equad, and manipulate
Equation 16 to isolate the electric field gradient as in Equation 19.
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∂E

∂z
= 4

∆Equad

e

1

Q̃
[α(I = 3/2,mI = ±3/2)− α(I = 3/2,mI = ±1/2)]−1 (19)

We can then plug in the values for the α equations, the electric charge, the measured ∆Equad,

and estimate Q̃ ≈ 0.5 barns all into Equation 19 to estimate the electric field gradient as (3.21 ±
0.03)1021V/m2. The uncertainty in this value just comes from the uncertainty in ∆Equad and is

described in Equation 20, as e and each α is a well defined value and Q̃ is estimated without uncertainty.

d(
∂E

∂z
) =

∂E

∂z

∆(∆Equad)

∆Equad
(20)

6 Conclusion

From the analysis, we find the results as pretty reasonable. For all peaks in the three distributions, each
Lorentzian had good fitting parameters with reasonable reduced chi squared values. For the Stainless
Steel 302 absorber, we found the mean lifetime as 71.44±5.95 ns, which is outside of uncertainty from
the literature value, but still within an order of magnitude. For the Enriched Iron absorber, we found a
magnetic field of 32.69± 0.10 Teslas, which is within the uncertainty of the literature value. The ratio
of µ0/µ1 was found to be 0.585±0.002, which is also within uncertainty of the literature value. For the
Sodium Nitroprusside absorber, we found an electric field gradient of (3.21± 0.03)1021V/m2, which is
expected to be quite large. The mean lifetime measured for each of the peaks in the Enriched Iron and
Sodium Nitroprusside Spectrum were all close to each other, and within an order of magnitude of the
literature value. For the most part, the findings of this experiment agree with the expected literature
values.
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