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We use a Michelson interferometer and a moving emitter, creating a Doppler effect, in order to
study the Mossbauer effect. The Mossbauer effect is used to study very miniscule energy changes
due to nuclear transitions from a higher to lower energy state. We use a stainless steel absorber,
an enriched isotope of 57Fe as an absorber, and a sodium nitroprusside absorber to study these
materials. The stainless steel absorber was used to find the mean lifetime of a I = 3/2 57Fe decaying
to its I = 1/2 ground state as 71.44 ± 5.95 ns, which is far from the expected mean lifetime of
141.4 ± 1.4 ns. We use the enriched isotope absorber to find a magnetic dipole ratio from the
excited to ground state of 0.585 ± 0.002, which is within uncertainty of the expected value of 0.587
± 0.032. The nitroprusside absorber was studied to find an internal electric field gradient of (3.21
± 0.03)1021V/m2. We then speak on modern applications of Mossbauer spectroscopy and present
these results to show the versatility of studying the Mossbauer effect in different environments to
collect information of materials without directly interacting with the object.

I. BACKGROUND

In the absence of any external effects, the energy dif-
ference between the I = 1/2 and I = 3/2 nuclear states
of 57Fe is 14.4 keV. However, the local environment in
which the nucleus is sitting can cause this ‘true’ energy
difference to change. For example, chemical isomer shifts
can come about when the orbital electrons of the host and
neighboring atoms cause fields that can cause energy lev-
els in the nucleus to change. Another local environment
variable that can cause the nucleus to have different en-
ergy shifts when going from I = 3/2 to I = 1/2 is the
nuclear Zeeman splitting effect, where one transition en-
ergy has many transition energies. Also, an electric field
gradient that is due to simply the molecular structure
around the nucleus of 57Fe can cause a quadrupole split-
ting effect. To study these very fine differences in the
‘true’ shift in energy, we can use Mossbauer spectroscopy.

We use a 57Fe source which will emit a gamma ray in
14.4 keV, and we can use absorbers with different envi-
ronments to alter how the energy shift is detected. Using
a linear motor, we can move the source of gamma rays
towards and away from the absorber, causing a Doppler
effect. To look at the absorption of the Doppler-shifted
gamma rays as a function of energy, we can measure
the amount transmitted through a given absorber. For
some fixed time tdwell, the UCS-30 software can count the
amount of gamma rays that pass through the absorber
in a revolution of the linear motor. The software sweeps
over each channel, and assigns a small time interval. It
then counts the amount of gamma rays having passed
in that small time interval for that channel. It keeps
counting the gamma rays for all 512 channels, which will
correspond to the tdwell.
Using the geometry of the Michelson interferometer

which can be seen in Figure 1, we can map each fringe
amount with some change in position of the linear motor
over some time interval it takes for the linear motor to
move [1]. Having some change in position over a time in-
terval, we have a velocity! We can take a fringe spectrum
and map it onto a velocity spectrum. Knowing the energy

FIG. 1. Michelson Interferometer Setup

shift difference due to the Doppler effect, we can express
the energy shift as E

′

t − Et = ∆(E(ch)) = v(ch)Et/c,
where ∆(E(ch)), Et, and v(ch) are the change in energy
as a function of channel, the transition energy, and ve-
locity as a function of channel. In effect, we can map the
velocity onto the shift in energy from the transition en-
ergy. With these different mappings and conversions, we
can plot the transmission through the absorber as a func-
tion of the change in the ‘true’ energy transition of 14.4
keV as a linear motor moves the 57Fe source. We can fit
dips in the transmission energy to a known distribution
and calculate some interesting characteristics about the
local environment causing the shift in the energy transi-
tion.

To measure the chemical isomer shift, we use a stain-
less steel 302 absorber. To measure the shift due to
the nuclear Zeeman splitting effect, we take an enriched
57Fe plate as the absorber. To study the shift due to
an electric field gradient, we use a sodium nitroprusside
absorber.
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II. VELOCITY CALIBRATION

To calibrate the velocity, we can first look at the fringe
and make a fit to the data using Equation 1 for the fringe
count

n(ch) = n0|ch− ch0| (1)

where n0 and ch0 are fitted values for the slope and
where the fringe goes to zero respectively. We take a
fringe spectrum before and after the experiment (repre-
sented in the following Figures and Tables as ”Pre” and
”Post”) to confirm that our conversions for the shift from
the energy transition is the same throughout the experi-
ment.

Using the geometry of the Michelson Interferometer
setup shown in Figure 1, we can note that the photocell
will notice n fringes if ∆x = nλ/2, where λ is the wave-
length of the He Ne Laser, and ∆x is the displacement
due to the moving mirror. The wavelength of the laser is
known as λ = 632.8 nm.

The fitting values to the equation for the fringe values
are in Table 1. The reduced chi squared value corre-
sponds to how well the data fits to Equation 1.

n0 (count/channel) ch0 (channel) χ2/N

Pre 19.81 ± 0.03 290.11 ± 0.03 2.28

Post 4.97 ± 0.03 288.41 ± 0.12 0.63

TABLE I. Fitting Parameters for Fringe

FIG. 2. Velocity Fitting

With relatively low reduced χ2 values near 1 for both,
this indicates a pretty good fit to the equation. We es-
timated the error for the fringe count as 7 counts as a
deviation of nearby measures just by eye.

Over some region of time, we can convert the fringe
counts to a velocity of the source as

v =
∆x

∆t
=

n(ch)λ

2∆t
=

λ

2∆t
n0(ch− ch0) (2)

where ∆t is the total amount of time passed after p
number of revolutions of the motor. We define the region
of time as some range of channels where the V shape
is well defined, which here is channels 225 to 375. In
total, ∆t = p · tdwell, and we have set tdwell = 300µs
in the software. Recording the amount of passes, n, we
can calculate the source’s velocity. After completing the
conversion, we get Figure 2.
We can notice that the velocities have very similar

slopes and x-axis intercepts, which gives an indication
that we can use either of the associated velocity to con-
vert to shifts from the transition energy. I blindly chose
the ”Pre” velocity as my conversion factor with no drastic
reason. A similar analysis could be done with the ”Post”
velocity and the results should still be very similar.
Since we calculated the velocity as a function of n0,

ch0, and ch, we know that each of these values have some
intrinsic uncertainty attributed to each. At the level of
sensitivity we are interested in, we can assume that the
wavelength of the laser and the total time interval, ∆t,
have negligible uncertainty. In effect, we can estimate
the uncertainty in the velocity of the source as Equation
3.

dv

v
=

√
dn0

n0

2

+
dch

(ch− ch0)

2

+
dch0

(ch− ch0)

2

(3)

where n0, ch0, dn0 and dch0 come from a fitting al-
gorithm based on covariance matrices. Now we have the
value for the velocity as well as its uncertainty, as a func-
tion of the channel and the channel’s uncertainty.
Furthermore, we can convert this velocity value for the

source, to energy shifts from the transition energy of 14.4
keV by using Equation 4.

∆E(ch) = v(ch)Et/c (4)

where Et is the ’true’ transition energy of 14.4 keV
from the Co-57’s decay to Fe-57, specifically the tran-
sition of 57Fe I = 3/2 to I = 1/2, and c is the speed
of light. Here, we take the uncertainty in the speed of
light and the energy transition to be negligible. In effect,
we estimate the uncertainty in this change from the true
energy shift as Equation 5.

∆(∆E(ch)) = ∆E(ch) · dv/v (5)

We can now create a conversion factor of channels to
energy shift, taking into account the velocity as actually
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negative in the channels before the velocity hits zero. Af-
ter plugging in the fitted values for the original fit to the
fringe function given by Equation 1, we find the energy
described as

∆E(ch)±∆(∆E(ch)) = ∆E(ch)±∆E(ch)dv/v

where we can use the fitted values and their uncer-
tainties from Table I to find an equation as a function
of the channel measured and its uncertainty. We can
make a linear fit to this relationship to find a slope of
2.598 ± 0.003 in units of nano-eV/channels, which can
be used as a conversion when the ch0 x-axis intercept
is not important. Finding these miniscule changes from
the transition energy will allow us to study properties for
the three absorbers we are using: stainless steel, enriched
iron, and sodium nitroprusside.

III. STAINLESS STEEL 302 SPECTRUM

To study the change to the ‘true’ transition energy of
14.4 keV due to a chemical isomer shift, we use a stainless
steel 302 plate as an absorber for the gamma rays emitted
during the transition.

FIG. 3. Stainless Steel 302 Spectrum

A priori, we know that the distribution of the absorp-
tion peaks will be Lorentzian, so we can fit a function of
the form Count = D−I(E), where I is a Lorentzian fitted
to the spectrum and D is some constant. The Lorentzian
distribution is shown in Equation 6. To choose the region
of interest to fit the Lorentzian distribution, I wanted to
find a region that allowed for a bit of the flat count around
700, shown in Figure 3.

I(E) = I0
(Γ/2)2

(E − E0)2 + (Γ/2)2
(6)

Here, the ∆E we want is Equation 6’s E0, and the
FWHM of the distribution is Equation 6’s Γ. The E0 will
provide the shift in energy (from Equation 6’s E) where
the absorption peaks, while the FWHM will provide the
natural linewidth of the transition. Since this is simply a
counting process, we assume a Poisson distribution and
use its associated uncertainty. The estimated uncertainty
in the actual counts at a certain energy/channel is simply
the square root of the count at that channel. After com-
pleting the fit, we find the final parameters are shown in
Table II.

Γ (µeV) ∆E (µeV) χ2/N

0.018 ± 0.002 -0.0116 ± 0.0026 0.91

TABLE II. Fitting Parameters for Stainless Steel Spectra

The fits were made using raw channels, so the appro-
priate ∆E and its uncertainty comes from Equations 4
and 5. The Γ is also fitted using channels, and since we
are taking the difference between two channel values, the
ch0 end up canceling out from both sides of where the
width is at half max, so we can use the slope for the con-
version between channels to energy of m = 2.598± 0.003
in units of nano-eV/channels multiplied by the channel
number.

Γ = mΓch (7)

Where Γch is the fitted FWHM when using channels.
In effect, the uncertainty can be estimated as Equation
8.

dΓ

Γ
=

√
(
dΓch

Γch
)2 + (

dm

m
)2 (8)

where we get the uncertainty in Γch from the fitting
algorithm, provided in Table 2.
Calculating the mean lifetime of the I = 3/2 state from

(Γ/2)τ = h̄/2, where Γ is half of the observed FWHM,
we can isolate the mean lifetime to get Equation 9

τ = h̄/(Γobs/2) (9)

We estimate the uncertainty in h̄ as negligible in this
equation as it is a well-known value. In effect, the uncer-
tainty for the mean lifetime is estimated as

dτ

τ
=

√
(
dΓ

Γ
)2 =

dΓ

Γ
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We then get 71.44±5.95 ns as the mean lifetime, which
is about half of the literature value of 141.4± 1.4 ns [2].
Our calculated value is very far away from the expected
value, and is nowhere near being within uncertainty. We
have used the stainless steel absorber to characterize the
mean lifetime of a decaying 57Fe from I = 3/2 to I = 1/2
using Mossbauer Spectroscopy.

IV. ENRICHED IRON SPECTRUM

To study the change to the ‘true’ transition energy of
14.4 keV due to the Zeeman effect, we use an enriched
57Fe plate as an absorber for the gamma rays emitted in
the transition.

Similarly as for the stainless steel, we can fit Lorentzian
distributions for each peak. Each nuclear Zeeman split
can be attributed to each peak from left to right in Figure
4.

FIG. 4. Enriched Iron Spectrum

Since the shift in energy and velocity are linearly de-
pendent, each transition can be read from low velocity /
low energy shift to high velocity / high energy shift from
left to right in an energy shift diagram.

Each transition can have a change of the initial quan-
tum numbermI equal to -1, 0, and 1. From left to right in
Figure 4, the first transition / Dip 1 is from mI = 1/2 to
mI = 3/2, Dip 2 is mI = 1/2 to mI = 1/2, Dip 3 is from
mI = 1/2 to mI = −1/2, Dip 4 is from mI = −1/2 to
mI = +1/2, Dip 5 is frommI = −1/2 tomI = −1/2, and
the final transition is from mI = −1/2 to mI = −3/2.
The dip number is simply an index system I made to
more easily refer to a specific energy transition.

Each of these peaks had a Lorentzian distribution fit-
ted to them, with the relevant values found in Table III.

The uncertainties for Γ, ∆E, and τ use the same sys-
tem as for the stainless steel. We can see that most Γ are
narrower than that of the observed stainless steel 0.018
± 0.002 µeV from Table II.
We can find ∆E0 as the difference between energy

shifts that start on different mI values in the I = 1/2
state, but end up on the same mI values in the I = 3/2
states. This means that either the difference between
Dips 4 and 2 or the difference between Dips 5 and 3
transition can be used to find ∆E0.
The first method yields 0.0186 ± 0.035 µeV, while the

latter has the value 0.0186 ± 0.034 µeV. These values
are in agreement with each other, which is a good check.
Since we are subtracting the values, the uncertainty for
these differences is given by Equation 10.

∆(∆E0) =
√
∆E2

2 +∆E2
1 (10)

where ∆Ei are the shifts in energy peaks.
There is a relationship between ∆E0 and H, the mag-

netic field in vicinity of the nucleus. We can manipulate
the equation to find this magnetic field H in Equation
11.

H = I0
∆E0

µ0
(11)

With I0 = 1/2 and µ0 = 2.884·10−9 eV/T, we can find
two values of the magnitude of the magnetic field using
the two values found for ∆E0. To propagate uncertainty
for the magnetic field’s magnitude, we Equation 12.

dH = H

√
∆(∆E0)

∆E0

2

+
dµ0

µ0

2

(12)

In this case, we take dµ0 to be 0.00007µn, where µn is
the nuclear magneton constant.
Following these steps, we get two values for the mag-

netic field. One for the transition difference in energy
from the fourth and second transition, H1 = 32.68±6.14
T, and another from the fifth and third transition H2 =
32.69 ± 5.84 T. Using these values and their appropri-
ate uncertainty, we can fit a horizontal line that’s in-
dependent of the x-value using the uncertainty to com-
pute a weighted average to find what average value the
two values provide. The averaged magnetic field found is
Havg = 32.69± 4.23 T.
Both the individual and averaged values are in agree-

ment with each other, as well as within uncertainty of
the literature value 33.3 ± 1.0 Tesla. [3]
We can also find the values for ∆E1 by taking the

energy shift difference between neighboring values of first
and second, second and third, fifth and fourth, and fifth
and sixth peaks. In that same order, we find the values
for the difference between the changes from the energy
shift as 0.102 ± 0.066, 0.106 ± 0.036, 0.106 ± 0.033,
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Dip Number Initial mI Final mI Γ (µeV) ∆E (µeV) χ2/N τ (ns)

1 +1/2 +3/2 0.019 ± 0.002 -0.2531 ± 0.0569 1.73 68.63 +/- 5.49

2 +1/2 +1/2 0.015 ± 0.002 -0.1515 ± 0.0340 1.57 86.90 +/- 8.80

3 +1/2 -1/2 0.011 ± 0.002 -0.0454 ± 0.0102 1.46 119.59 ± 16.67

4 -1/2 +1/2 0.013 ± 0.002 0.0344 ± 0.0078 1.17 98.31 ± 11.26

5 -1/2 -1/2 0.012 ± 0.002 0.1406 ± 0.0316 0.82 109.56 ± 13.99

6 -1/2 -3/2 0.017 ± 0.002 0.2494 ± 0.0560 1.35 75.67 ± 6.67

TABLE III. Fitting Parameters for Enriched Iron Spectra

and 0.109 ± 0.064 in units of µeV. We can now use the
similar relationship of µ0 from the previous equation for
the magnetic field, but now for µ1 shown in Equation 13.

µ1 = ∆E1I1/H (13)

where I1 = 3/2 and H is the same magnetic field found
as before. The three values for the magnetic field are very
close to each other, but I use the averaged magnetic field
Havg, as well as its associated uncertainty to complete
this calculation. The uncertainty is then described in
Equation 14.

dµ1 = µ1

√
∆(∆E1)

∆E1

2

+
dHavg

Havg

2

(14)

where ∆(∆E1) is the uncertainty in the difference of
two energy shifts, as described in equation 10.

The uncertainty in the ratio of µ0 to µ1 is described
by Equation 15.

d(
µ0

µ1
) =

µ0

µ1

√
dµ0

µ0

2

+
dµ1

µ1

2

(15)

Since we have four neighboring differences in energy
shifts for ∆E1, we get four different ratios for the mag-
netic dipole moment from the lower to higher energy
state. In the same order as before, reading the relevant
differences from left to right, we get the following val-
ues 0.610 ± 0.045, 0.584 ± 0.010, 0.584 ± 0.094, and
0.570 ± 0.045. Two fall within uncertainty of the liter-
ature value of 0.587 ± 0.032. [4] Fitting similarly as for
the magnetic field to a constant mu ratio value indepen-
dent of x, we find a weighted average of the mu ratios as
µavg = 0.585± 0.025.

This average of the ratios of the nuclear magnetic
dipole moment from the I = 3/2 to the nuclear magnetic
dipole moment from I = 1/2 falls within uncertainty of
the literature value. Using simply a plate of enriched iron
as the absorber, we were able to find the inner magnetic
field and the ratio of nuclear magnetic dipole moments
from the lower to higher energy states.

V. QUADRUPOLE SPECTRUM

To study the change to the ‘true’ transition energy of
14.4 keV due to quadrupole splitting, we use a sodium
nitroprusside plate as an absorber for the gamma rays
emitted in the transition.

FIG. 5. Quadrupole Spectrum

Similarly as for both the stainless steel and enriched
iron spectra, we can fit Lorentzian distributions for each
peak. Using a similar logic as before, we know that the
lower velocity shift corresponds to a final mI state of
±1/2, and this lower velocity can be attributed to a lower
change from the ‘true’ energy shift.
Both peaks had a Lorentzian distribution fitted to

them and the relevant parameters can be seen in Table
IV.
Taking the difference between the two energy shifts

and propagating the errors like in Equation 10, we get
∆Equad = 0.078 ± 0.002 µeV. We can find an estimate
for the electric field gradient by evaluating Equation 16.

∆Equad = ∆E(3/2,±3/2)−∆E(3/2,±1/2) (16)

where the specific shifts in energy can be calculated as
Equation 17,
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Dip Number Initial mI Final mI Γ (µeV) ∆E (µeV) χ2/N τ (ns)

1 ±1/2 ±1/2 0.012 ± 0.002 -0.0574 ± 0.0129 1.64 113.49 ± 15.01

2 ±1/2 ±3/2 0.009 ± 0.002 0.0205 ± 0.0046 0.75 139.96 ± 22.83

TABLE IV. Fitting Parameters for Sodium Nitroprusside Spectra

∆E(I,mI) = eα(I,mI)Q̃
∂E

∂z
(17)

where e is the electric charge and α can be described
as equation 18.

α(I,mI) =
3m2

I − I(I + 1)

I(2I − 1)
(18)

We can use the difference between the two energy
shifts, which we know as ∆Equad, and manipulate Equa-
tion 16 to isolate the electric field gradient as in Equation
19.

∂E

∂z
= 4

∆Equad

e

1

Q̃
[α(3/2,±3/2)−α(3/2,±1/2)]−1 (19)

We can then plug in the values for the α equations,
the electric charge, the measured ∆Equad, and estimate

Q̃ ≈ 0.5 barns all into Equation 19 to estimate the electric
field gradient as (3.21±0.03)1021V/m2. The uncertainty
in this value just comes from the uncertainty in ∆Equad

and is described in Equation 20, as e and each α is a well
defined value and Q̃ is estimated without uncertainty.

d(
∂E

∂z
) =

∂E

∂z

∆(∆Equad)

∆Equad
(20)

Using only a sodium nitroprusside absorber, we are
able to estimate a local electric field gradient produced
by the nitroprusside ions as (3.21±0.03)1021V/m2. Inter-
estingly, the mean lifetime is longer than when we used
a stainless steel and enriched iron absorber.

VI. CONCLUSION

From the analysis, we find the results reasonable. For
all peaks in the three distributions, each Lorentzian had
fitting parameters with reasonable reduced chi squared
values around 1, shown in Tables II, III, and IV. For the
Stainless Steel 302 absorber, we found the mean lifetime
as 71.44 ± 5.95 ns, which is outside of uncertainty from
the literature value 141.4 ± 1.4. For the Enriched Iron
absorber, we found an inner magnetic field of 32.69±4.23
Teslas, which is within the uncertainty of the literature

value 33.3 ± 0.1 Teslas. The ratio of µ0/µ1 was found to
be 0.585± 0.025, which is also within uncertainty of the
literature value 0.587 ± 0.032. For the Sodium Nitro-
prusside absorber, we found an electric field gradient of
(3.21±0.03)1021V/m2. For the most part, the findings of
this experiment agree with the expected literature values.
Using this Michelson Interferometer setup, we are able
to study properties of the different absorbers by utiliz-
ing this Mossbauer Spectroscopy technique, which finds
changes in energy of the order µeV for a transition energy
in the range of keV (an order of magnitude difference of
9!).
Despite being well studied over the last 60 years, there

are still many important applications of the Mossbauer
effect. Using 3 absorbers, we found different mean life-
time of decay, an inner magnetic field, an inner electric
field gradient, and a ratio for the higher to lower energy
state magnetic dipole moment. Lots of information can
be found using Mossbauer spectroscopy, all without de-
structively interacting with the material. Modern appli-
cations do something similar. For example, NASA’s Mars
Exploration Rover (MER) Spirit, that was on Mars from
2004 to 2010, took important scientific data using this
effect. Specifically, the mineralogy of rock, soil, and dust
at the Gusev crater was catalogued with an iron oxidized
Mossbauer Spectrometer [5]. Furthermore, new develop-
ments are being completed on more sensitive spectrome-
ters that can used to measure oxidation states and Fe dis-
tributions in other astronomical bodies like the Moon and
Jupiter’s moon Europa [6]. Thinking about the future of
particle physics, measuring the specific masses of the dif-
ferent neutrino flavors is an important task that will lead
to new discoveries with respect to particle physics at top
institutions like Fermilab. There has been recent devel-
opment that Mossbauer Spectroscopy would be able to
measure Coherent Elastic Neutrino-Nucleus Scattering
(CEνNS) at the appropriate amounts to be make fur-
ther development in neutrino flavor mass measurement
[7]. As can be seen from modern applications as well as
the findings of this experiment, Mossbauer spectroscopy
has plenty of applications to be able to study different
properties of a material.
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